Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139624

RESUMO

Silk fiber, recognized as a versatile bioresource, holds wide-ranging significance in agriculture and the textile industry. During the breeding of silkworms to yield new varieties, optical sensing techniques have been employed to distinguish the colors of silk cocoons, aiming to assess their improved suitability across diverse industries. Despite visual comparison retaining its primary role in differentiating colors among a range of silk fibers, the presence of uneven surface texture leads to color distortion and inconsistent color perception at varying viewing angles. As a result, these distorted and inconsistent visual assessments contribute to unnecessary fiber wastage within the textile industry. To solve these issues, we have devised an optical system employing an integrating sphere to deliver consistent and uniform illumination from all orientations. Utilizing a ColorChecker, we calibrated the RGB values of silk cocoon images taken within the integrating sphere setup. This process accurately extracts the authentic RGB values of the silk cocoons. Our study not only helps in unraveling the intricate color of silk cocoons but also presents a unique approach applicable to various specimens with uneven surface textures.


Assuntos
Bombyx , Seda , Animais , Seda/química
2.
Sensors (Basel) ; 23(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37050784

RESUMO

Pulse oximetry is a non-invasive method for measuring blood oxygen saturation. However, its detection scheme heavily relies on single-point measurements. If the oxygen saturation is measured at a single location, the measurements are influenced by the profile of illumination, spatial variations in blood flow, and skin pigment. To overcome these issues, imaging systems that measure the distribution of oxygen saturation have been demonstrated. However, previous imaging systems have relied on red and near-infrared illuminations with different profiles, resulting in inconsistent ratios between transmitted red and near-infrared light over space. Such inconsistent ratios can introduce fundamental errors when calculating the spatial distribution of oxygen saturation. In this study, we developed a novel illumination system specifically designed for a pulse oximetry imaging system. For the illumination system, we customized the integrating sphere by coating a mixture of barium sulfate and white paint inside it and by coupling eight red and eight near-infrared LEDs. The illumination system created identical patterns of red and near-infrared illuminations that were spatially uniform. This allowed the ratio between transmitted red and near-infrared light to be consistent over space, enabling the calculation of the spatial distribution of oxygen saturation. We believe our developed pulse oximetry imaging system can be used to obtain spatial information on blood oxygen saturation that provides insight into the oxygenation of the blood contained within the peripheral region of the tissue.


Assuntos
Iluminação , Oxigênio , Oximetria/métodos , Estimulação Luminosa , Pulmão
3.
Biosensors (Basel) ; 12(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36004986

RESUMO

As surface-enhanced Raman scattering (SERS) has been used to diagnose several respiratory viruses (e.g., influenza A virus subtypes such as H1N1 and the new coronavirus SARS-CoV-2), SERS is gaining popularity as a method for diagnosing viruses at the point-of-care. Although the prior and quick diagnosis of respiratory viruses is critical in the outbreak of infectious disease, ELISA, PCR, and RT-PCR have been used to detect respiratory viruses for pandemic control that are limited for point-of-care testing. SERS provides quantitative data with high specificity and sensitivity in a real-time, label-free, and multiplex manner recognizing molecular fingerprints. Recently, the design of Raman spectroscopy system was simplified from a complicated design to a small and easily accessible form that enables point-of-care testing. We review the optical design (e.g., laser wavelength/power and detectors) of commercialized and customized handheld Raman instruments. As respiratory viruses have prominent risk on the pandemic, we review the applications of handheld Raman devices for detecting respiratory viruses. By instrumentation and commercialization advancements, the advent of the portable SERS device creates a fast, accurate, practical, and cost-effective analytical method for virus detection, and would continue to attract more attention in point-of-care testing.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vírus , COVID-19/diagnóstico , Humanos , Testes Imediatos , SARS-CoV-2 , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...